Home
Class 12
MATHS
If ^(n+1)C3=2.^nC2, then n= (A) 3 (B) 4 ...

If `^(n+1)C_3=2.^nC_2,` then n=` (A) 3 (B) 4 (C) 5 (D) 6

Promotional Banner

Similar Questions

Explore conceptually related problems

If ^(n+1)C_(3)=2.quad ^(n)C_(2) then =3 b.4c.6d.5

If ^nC_0/2- ^nC_1/3+^nC_2/4-…….+(-1)^n ^nC_n/(n+2)= 1/(1999x2000) then n= (A) 1998 (B) 1999 (C) 2000 (D) 2001

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question:If n is a positive integer then lim_nrarroo n[^nc_n- 2/3 . ^nC_(n-1)+(2/3)^2.^nC_(n-2-...........+(-1)^n(2/3)^n.^nC_n]= (A) 1 (B) 1/2 (C) 0 (D) 1/3

The value of 'n' for which:^(n-1)C_4 -^(n-1)C_3-5/4 .^(n-2)P_2< 0 , where n in N. (a) (5, 6, 7, 8, 9, 10) (b) ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) (c) (0, 2) uu (3, 11) (d) (-oo,2)uu(3,11)

If S_n=^nC_0.^nC_1+^nC_1.^nC_2+.....+^nC_(n-1).^nC_n and if S_(n+1)/S_n=15/4 , then the sum of all possible values of n is (A) 2 (B) 4 (C) 6 (D) 8

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question: If n is a positive integer then 1/((49)^n) - 8/((49)^n)(^(2n)C_1)+8^2/((49)^n)( ^(2n)C_2)- 8^3/((49)^n)(^(2n)c_3)+......+8^(2n)/((49)^n)= (A) -1 (B) 1 (C) (64/49)^n (D) none of these

If ^n C_3+^n C_4>^(n+1)C_3 , then a. n >6 b. n >7 c. n<6 d. none of these