Home
Class 12
MATHS
If a0,a1,a2,……an be the successive coeff...

If `a_0,a_1,a_2,……a_n` be the successive coefficients in the expnsion of `(1+x)^n` show that `(a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3 and a_4 be any four consecutive coefficients in the expansion of (1+x)^n , prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)= (2a_2)/(a_2+a_3)

If cosx=a_0+a_1 x+a_2x^2+... then the value of a_2 is

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If the expression in powers of x of the function 1/((1-ax)(1-bx)) is a_0+a_1 x+a_2 x^2+a_3 x^3+... then a_n is