Home
Class 12
MATHS
Deduce that: sum(r=0)^n .^nCr (-1)^n 1/(...

Deduce that: `sum_(r=0)^n .^nC_r (-1)^n 1/((r+1)(r+2)) = 1/(n+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Deduce that: sum_(r=0)^(n)*^(n)C_(r)(-1)^(n)(1)/((r+1)(r+2))=(1)/(n+2)

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))

Evaluate sum_(r = 1)^(n) ""^nC_r 2^r

Find sum_(r=0)^n(r+1)*"^nC_rx^r

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)

Assertion: If n is an even positive integer n then sum_(r=0)^n ^nC_r/(r+1) = (2^(n+1)-1)/(n+1) , Reason : sum_(r=0)^n ^nC_r/(r+1) x^r = ((1+x)^(n+1)-1)/(n+1) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0