Home
Class 12
MATHS
If n is a positive integer, prove that ...

If n is a positive integer, prove that
`underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

If n is a positive integer and if (1+x+x^(2))^(2n)=underset(r=0)overset(2n)(sum)a_(r)x^(r) , then

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)

If n is a positive integer,then sum_(r=2)^(n)r(r-1)*C_(r) =

If n is a positive integer,then sum_(r=1)^(n)r^(2)*C_(r)=

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then