Home
Class 12
MATHS
Show that sin^p\ theta\ cos^q\ theta at...

Show that `sin^p\ theta\ cos^q\ theta` attains a maximum, when `theta=tan^(-1)sqrt(p/q)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(p) thetacos^(q)theta attains a maximum when theta=tan^-1sqrt((p/q))

Show that sin^(P) theta cos^(q) theta attains a maximum value, when theta = tan^(-1) sqrt((p)/(q)) .

Show that sin^(p) theta cos^(q) theta , p , q in N attains maximum value when theta = tan^(-1) sqrt((p)/(q)) . Identify if it is a global maxima or not .

cos p theta=cos q theta,p!=q, thetn

Prove that the maximum value of the functions sin^(p)theta cos^(q) is at theta=tan^(-1)(sqrt((p)/(q)))

If sin theta + cos theta =p and tan theta+ cot theta = q then q (p^(2) -1) =

If sin theta = p/q then find tan theta .

If sin theta+cos theta=p and sec theta+csc theta=q show that q(p^(2)-1)=2p

If sin theta+cos theta=p and sec theta+cos ec theta=q find q(p^(2)-1)=