Home
Class 12
MATHS
If a+b+c=3 and agt0, bgt0, cgt0 then the...

If `a+b+c=3 and agt0, bgt0, cgt0` then the greatest value of `a^2b^3c^2=` (A) `(3^2)(2^3)(7^2)` (B) `(3^10 2^4)/7^7` (C) `(3^7 2^5)/7^2` (D) `(3^7 2^4)/7^7`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(2)c^(2) is

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

((3^(-1)7^(2))/(3^(3)7^(-4)))/((3^(3)7^(-5))/(2^(-2)7^(3)))

The number of real roots of 3^2x^2-7x+7=9 is (A) 0 (B) 2 (C) 1 (D) 4

If x:y=7:3, then the value of (xy+y^(2))/(x^(2)-y^(2)) is (3)/(4) b.(4)/(3) c.(3)/(7) d.(7)/(3)

If a^(3) =1+7, 3^(3) = 1+7+b, 4^(3) = 1+7 +c , then the value of a+ b+ c is