Home
Class 12
MATHS
If In= int0^pi (1-cos2nx)/(1-cos2x)dx or...

If `I_n= int_0^pi (1-cos2nx)/(1-cos2x)dx or int_0^pi (sin^2nx)/(sin^2x) dx,` show that `I_1, I_2, I_3………….` are inA.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

I= int_0^(pi)(x sin x)/(1+cos^(2)x)dx

(i) int_0^pi (sin^2 x/2- cos^2 x/2) dx (ii) int_0^(pi//2) (sin^2x)/(1+cosx)^2 dx

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to