Home
Class 12
MATHS
If a,b,c,d, x are real and the roots of ...

If a,b,c,d, x are real and the roots of equation `(a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)=0` are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d,e,x are real and (a^2+b^2+c^2+d^2)x^2-2(ab+bc+cd+de)x+(b^2+c^2+d^2+e^2)le0 then a,b,c,d,e are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If (b+c)/(a+d)= (bc)/(ad)=3 ((b-c)/(a-d)) then a,b,c,d are in (A) H.P. (B) G.P. (C) A.P. (D) none of these

If a,b,c are in A.P ,then 3^(a),3^(b),3^(c) shall be in (A) A.P (B) G.P (C) H.P (D) None of these

If a, b,c be the sides foi a triangle ABC and if roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal then sin^2 A/2, sin^2, B/2, sin^2 C/2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a,b,c,d are such unequal real numbers that (a^(2)+b^(2)+c^(2))p^(2)-2 (ab+bc+cd) p+ (b^(2)+c^(2)+d^(2)) le 0 then a,b,c, d are in -

If a,b,c,d and p are distinct real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 then prove that a,b,c,d are in G.P.

If a,b,c,d are distinct positive then a^n/b^ngtc^n/d^n for all epsilon N if a,b,c,d are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are real and equal, then (A) a+b+c!=0 (B) a,b,c are in H.P. (C) a,b,c are in H.P. (D) a,b,c are in G.P.

If a,b, and c are in G.P.then a+b,2b, and b+c are in a.A.P b.G.P.c. H.P.d.none of these