Home
Class 12
MATHS
If a,b,c be the sum of n term of three A...

If a,b,c be the sum of n term of three `A.P\'s` whose first terms are `unity` and common differences are in H.P., then n=` (A)` `(2ac+ab+bc)/(a+c-ab)` (B) `(2ac-ab-bc)/(a+c-ab)` (C) `(2ac-ab-bc)/(a+c-ab)` (D) `(2ac-ab+bc)/(a+c-ab)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P., then (bc)/(ca+ab),(ca)/(bc+ab),(ab)/(bc+ca)

If a,b and c are in H.P.,then the value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

If a,b, and c are in H.P.then th value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is ((a+c)(3a-c))/(4a^(2)c^(2)) b.(2)/(bc)-(1)/(b^(2)) c.(2)/(bc)-(1)/(a^(2)) d.((a-c)(3a+c))/(4a^(2)c^(2))

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If bc + ab + ca = abc, then the value of (b+c)/(bc(1-a))+(a+c)/(ac(1-b))+(a+b)/(ab(1-c)) is

If in the expansion of (1+x)^(n),a,b,c are three consecutive coeficients,then n=(ac+ab+bc)/(b^(2)+ac) b.(2ac+ab+bc)/(b^(2)-ac) c.(ab+ac)/(b^(2)-ac) d.none of these

35. If the sum of the roots of ax^2 + bx +c = 0 be equal to sum of the squares, then- (A) 2ac = ab + b2 (B) 2ab-bc + c2 c (D) None of these (D) None of these (C) 2bc -ac+2

Subtract : 2 ab + 5 bc - 7 ac from 5 ab - 2 bc - 2 ac + 10 abc