Home
Class 12
MATHS
If a=1+b+b^2+b^3+…..to oo where |b|lt1 t...

If `a=1+b+b^2+b^3+…..to oo where |b|lt1` then roots of equation `ax^2+x-ab=0` are (A) `-1,ab` (B) `1,b` (C) `-1, b` (D) `-1,a`

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation |[1,1,1],[a,x,a],[b,b,x]|=0 are (a) 1,1, (b) 1,a (c) 1,b, (d) a,b

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

If c lt a lt b lt d , then roots of the equation bx^(2)+(1-b(c+d)x+bcd-a=0

If a,b are the roots of the equation x^(2)+x+1=0, thn a^(2)+b^(2)= a.1b.2c-1d.3

If one root is nth power of the other root of this equation x^(2)-ax+b=0 then, b^(n/(n+1))+b^(1/(n+1)) = (A) a (B) a^(n) (C) b^(n) (D) ab

If one root is nth power of the other root of this equation x^(2)-ax+b=0 then b^(n/(n+1))+b^(1/(n+1))=

if a lt c lt b, then check the nature of roots of the equation (a -b)^(2) x^(2) + 2(a+ b - 2c)x + 1 = 0

If x = 1 is a common root of the equations ax^(2) + ax + 3 = 0 and x^(2) + x + b = 0 , then ab =

If the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal,show that 2/b=1/a+1/c.