Home
Class 12
MATHS
If agt0, bgt0, cgt0 and the minimum valu...

If `agt0, bgt0, cgt0` and the minimum value of `a^2(b+c)+b^2(c+a)+c^2(a+b)` is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(2)c^(2) is

If agt0,Bgt0 and A+B=pi/4 , then the minimum value of tanA+tanB is

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

For a,b,cgt0 , and a+b+c = 2 , and the maximum value of a^2b^2c^2 is k , then [k]=? (where [.] is G.I.F.)

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

If a+2b+3c=1 and a>0,b>0,c>0 and the greatest value of a^(3)b^(2)c is (1)/(k) then (k-5180) is

If a+b+c =0, then the value of frac(a^2 +b^2+c^2) (a^2 - bc) is (A) 0 (B) 1 (C) 2 (D) 3