Home
Class 12
MATHS
If a,b,c are positive real numbers then ...

If a,b,c are positive real numbers then `(1+a)^7(1+b)^7(1+c)^7` (A) `lt7^7a^4b^4c^4` (B) `le7^7a^4b^4c^4` (C) `gt7^7a^4b^4c^4` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c, are positive real numbers,then prove that (2004,4M){(1+a)(1+b)(1+c)}^(7)>7^(7)a^(4)b^(4)c^(4)

The coefficient of x^3y^4z in the expansion of (1+x+y-z)^9 is (A) 2.^9C_7.^7C_4 (B) -2.^9C_2 . ^7C_4 (C) ^9C_7.^7C_4 (D) none of these

If a,B,C are positive acute angles and tan A=(4)/(7),tan B=(1)/(7),tan C=(1)/(8), prove that A+B+C=45

Let a,b and c be real numbers such that a7b+8c and 8a+4bc=7, then find a^(2)-b^(2)+c^(2)

the value of [3-4(3-4)^4 )]^3 is (a) 1 (b) -1 (c) 0 (d) 7

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is (A)((b-a)^(4))/(6^(4))(B)((b-a)^(8))/(280) (C) ((b-a)^(7))/(7^(3)) (D) none of these

4 7/8 is equal tl 4.78 (b) 4.87 (c) 4.875 (d) None of these

(3.5xx1.4)/(0.7)=?( a) 0.7(b)2.4(c)3.5(d)7.1 (e) None of these

The rationalising factor of root(7)(a^(4)b^(3)c^(5)) is (a) root(7)(a^(3)b^(4)c^(2)) (b) root(7)(a^(3)b^(4)c^(2)) (c) root(7)(a^(2)b^(3)c^(3)) (d) root(7)(a^(2)b^(4)c^(3))