Home
Class 12
MATHS
The equation e^(sinx)-e^(-sinx)-4=0 has ...

The equation `e^(sinx)-e^(-sinx)-4=0` has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation e^(sin x)-e^(-sin x)-4=0 has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots

The equation e^(sinx)-e^(-sinx)-4=0 has (A) non real roots (B) integral roots (C) rational roots (D) real and unequal roots

If e^(sinx)-e^(-sinx)-4=0 , then the number of real values of x is

(x^(2)+1)^(2)-x^(2)=0 has (i) four real roots (ii) two real roots (iii) no real roots (iv) one real root

Let f(x)=x^3+x^2+10x+7sinx, then the equation 1/(y-f(1))+2/(y-f(2))+3/(y-f(3))=0 has (A) no real root (B) one real roots (C) two real roots (D) more than two real roots

If (x)=ax^(2)+bx+c&Q(x)=-ax^(2)+dx+c,ac!=0P(x)=ax^(2)+bx+c&Q(x)=-ax^(2)+dx+c,ac!=0 then the equation P(x)*Q(x)=0 has (a) Exactly two real roots (b) Atleast two real roots (c)Exactly four real roots (d) No real roots

Suppose a, b, c are real numbers, and each of the equations x^(2)+2ax+b^(2)=0 and x^(2)+2bx+c^(2)=0 has two distinct real roots. Then the equation x^(2)+2cx+a^(2)=0 has - (A) Two distinct positive real roots (B) Two equal roots (C) One positive and one negative root (D) No real roots

On the domain [-pi,pi] the equation 4 sin^3 x+2 sin^2 x-2 sinx-1=0 possess (A) only one real root(C) four real roots= 0 possess(B) three real roots(D) six real roots

If 0ltalphaltbetaltgammaltpi/2 then the equation 1/(x-sinalpha)+1/(x-sinbeta)+1/(x-singamma)=0 has (A) imaginary roots (B) real and equal roots (C) real and unequal roots (D) rational roots