Home
Class 12
MATHS
If the cube roots of unity are 1,omega,o...

If the cube roots of unity are `1,omega,omega^2,` then the roots of the equation `(x-1)^3+8=0` are : (a) `-1,1+2w,1+2w^2` (b) `-1,1-2w,1-2w^2` (c) `-1,-1,-1` (d) `1,w,w^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0, arte

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0 are : (a)-1,1+2w,1+2w^(2)(b)-1,1-2w,1-2w^(2)(b)1,w,w^(2)

If the cube roots of unity are 1,omega,omega^(2), then the roots of the equation (x-1)^(3)+8=0 are -1,1+2 omega,1+2 omega^(2) b.-1,1-2 omega,1-2 omega^(2) c.-1,-1,-1 d.none of these

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

if 1,w,w^(2) be imaginary cube root of unity then the root of equation (x-1)^(3)+8=0 are :

If 1,omega,omega^(2) are cube roots of unity then 1,omega,omega^(2) are in

If omega is a cube root of unity and /_=det[[1,2 omegaomega,omega^(2)]], then /_^(2) is equal to (A) -omega(B)omega(C)1(D)omega^(2)