Home
Class 12
MATHS
If w = z/(z-1/3i) and |w| =1, then z lie...

If `w = z/(z-1/3i)` and |w| =1, then z lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If complex variables z,w are such that w=(2z-7i)/(z+i) and |w|=2, then z lies on:

If w=(z)/(z-((1)/(3))i) and |w|=1, then find the locus of z and |w|=1, then find the

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit circle (D) None of these

If |z| le1 and |w| lt 1 , then shown that |z - w|^(2) lt (|z| - |w|)^(2)+ (arg z - arg w)^(2)