Home
Class 12
MATHS
Let for a丈a!关0, f(x)-ax2 + bx + c, g(x) ...

Let for a丈a!关0, f(x)-ax2 + bx + c, g(x) = aix? + bix + c, and p(x)-f(x)-g(x). If p(x) = 0 only for x =-1 and p(-2) = 2, then the value of p(2) is: (1) 18 (2) 3 AIEEE-2011] (3) 9 (4) 6

Promotional Banner

Similar Questions

Explore conceptually related problems

Let for a?a!?0, f(x)-ax2 + bx + c, g(x) = aix? + bix + c, and p(x)-f(x)-g(x). If p(x) = 0 only for x =-1 and p(-2) = 2, then the value of p(2) is: (1) 18 (2) 3 AIEEE-2011] (3) 9 (4) 6

Let for a!=a_(1)!=0,f(x)=ax^(2)+bx+cg(x)=a_(1)x^(2)+b_(1)x+c_(1) and p(x)=f(x)-g(x). If p(x)=0 only for x=-1 and p(-2)=2 then the value of p(2)

If (x + 6) is a factor of f (x) = x ^(3) + 3x ^(2) + 4x + P, then find the value of P.

If f(x) =ax^(2) +bx + c, g(x)= -ax^(2) + bx +c " where " ac ne 0 " then " f(x).g(x)=0 has

If p(x)=x^3-x^2+x+1 ,the value of (p(-1)+ p(1))/2 is (a)1/4 (b)4 (c)0 (d)-2

Let P(x) = x^4 + ax^3 + bx^2 + cx + d, where a, b, c, d in RR .Suppose P(0) = 6, P(1)=7, P(2) = 8 and P(3)=9, then find the value of P(4).

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

If (1-p)(1+3x+9x^(2)+27x^(3)+81x^(4)+243x^(5))=1-p^(6),p!=1, then the value of (p)/(x) is a (1)/(3) b.3 c.(1)/(2) d.2