Home
Class 12
MATHS
If A^2-A +I = 0, then the inverse of A i...

If `A^2-A +I = 0`, then the inverse of A is: (A) `A+I` (B) `A` (C) `A-I` (D) `I-A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I

If A^(2) - A + I = 0 , then the inverse of the matrix A is

If A^(2)-A+I=0, then the invers of A is A^(-2) b.A+I c.I-A d.A-I

Inverse of (3+4i)/(4-5i)

[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k

If A=[(2,-1),(-1,2)] and i is the unit matrix of order 2, then A^2 is equal to (A) 4A-3I (B) 3A-4I (C) A-I (D) A+I

what is the value of i^(-35)+i^7 ? (a) 1 (b) 3 (c) 0 (d) 2

Find the value of i^(73)+i^(74)+i^(75)+i^(76) (A) 0 (B) 2 (C) 2i (D) -2i

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I