Home
Class 12
MATHS
Let P and Q be 3xx3 matrices with P!=Q ....

Let P and Q be `3xx3` matrices with `P!=Q` . If `P^3=""Q^3a n d""P^2Q""=""Q^2P` , then determinant of `(P^2+""Q^2)` is equal to (1) `2` (2) 1 (3) 0 (4) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P, then determinant of (P^(2)+Q^(2)) is equal to (1)2(2)1(3)0(4)1

The Boolean expression sim(p vv q)vv(sim p^^q) is equivalent to (1)-p(2)p(3)q(4)sim q

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

2p+3q=18 and 4p^2+4pq–3q2−36=0 then what is (2p+q) equal to?