Home
Class 12
MATHS
Let n1ltn2ltn3ltn4ltn5 be positive integ...

Let `n_1ltn_2ltn_3ltn_4ltn_5` be positive integers such that `n_1+n_2+n_3+n_4+n_5=20`. Then the numbr of distinct arrangments `(n_1,n_2,n_3,n_4,n_5)` is_________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let n_(1)

The number of positive integers 'n' for which 3n-4,4n-5 and 5n-3 are all primes is

Let n be a positive integer such that sin (pi/(2n))+cos (pi/(2n))= sqrt(n)/2 then (A) n=6 (B) n=1,2,3,….8 (C) n=5 (D) none of these

The least positive integer n such that 2 divides n,3 divides n+1,4 divides n+2,5 divides n+3 and 6 divides n+4 is

If 'n' is a positive integer,then n.1+(n-1).2+(n-2).3+...+1.n=

If n/2 - (3n)/4 + (5n)/6 = 21 , then n = ?