Home
Class 12
MATHS
If G be the centroid of the DeltaABC and...

If G be the centroid of the `DeltaABC and O` be any other point in theplane of the triangle `ABC`, then prove that: `OA^2 +OB^2 +OC^2=GA^2 +GB^2 +GB^2 + GC^2 + 3GO^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^(2)+PB^(2)+PC^(2)=GA^(2)+GB^(2)+GC^(2)+3GP^(2)

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

Let O be any point in the interior of DeltaABC , prove that : AB+BC+CA lt 2 (OA+OB+OC)

If G be the centroid of the Delta ABC, then prove that AB^(2)+BC^(2)+CA^(2)=3(GA^(2)+GB^(2)+GC^(2))

If G be the centroid of a triangle ABC,prove that,AB^(2)+BC^(2)+CA^(2)=3(GA^(2)+GB^(2)+GC^(2))

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

If G denotes the centroid of Delta ABC, then write the value o vec GA+vec GB+vec GC

'O' is any point in the interior of a Delta ABC prove that AB+BC+CA>OA+OB+OC

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

If G is the centroid of a DeltaABC , then GA^(2)+GB^(2)+GC^(2) is equal to