Home
Class 12
MATHS
If the line segment joining the points A...

If the line segment joining the points `A(a,b) and B(a, -b)` subtends an angle `theta` at the origin, show that `cos theta = (a^2 - b^2)/(a^2 +b^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line segment joining the points A(a,b) and B (c, d) subtends a right angle at the origin, show that ac+bd=0

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the line segment joining the point A(a,b) and B(c,d) subtends an angle theta at the origin.Prove that cos theta=(ac+bd)/(sqrt((a^(2)+b^(2))*(c^(2)+d^(2))))

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))

If the segment joining the points (a,b),(c,d) subtends a right angle at the origin,then

If a tan theta = b, then a cos 2 theta+ b sin 2 theta =

If theta is the angle between the lines joining the points A(0, 0) and B(2, 3), and the points C(2,-2) and D(3,5), show that tan theta=(11)/(23)

tan theta-cot theta=a and sin theta+cos theta=b(b^(2)-1)^(2)(a^(2)+4)

If tan theta=(a)/(b) then b cos2 theta+a sin2 theta=

If tan theta=(a)/(b), show that (a sin theta-b cos theta)/(a sin theta+b cos theta)=(a^(2)-b^(2))/(a^(2)+b^(2))