Home
Class 12
MATHS
If the points (x1, y1), (x2, y2) and (x3...

If the points `(x_1, y_1), (x_2, y_2) and (x_3, y_3)` be collinear, show that: `(y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0

The points (x, 2x), (2y, y) and (3, 3) are collinear

If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) lie on the same line,prove that (y_(1)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0

If the points (x_1,y_1),(x_2,y_2)and(x_3,y_3) are collinear, then the rank of the matrix {:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:} will always be less than

If the circle x^2 + y^2 = a^2 intersects the hyperbola xy=c^2 in four points P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4) , then : (A) x_1 + x_2 + x_3 + x_4 = 0 (B) y_1 + y_2 + y_3 + y_4 = 0 (C) x_1 x_2 x_3 x_4= c^4 (D) y_1 y_2 y_3 y_4 = c^4

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

If the join of (x_(1),y_(1)) and (x_(2),y_(2)) makes on obtuse angle at (x_(3),y_(3)), then prove than (x_(3)-x_(1))(x_(3)-x_(2))+(y_(3)-y_(1))(y_(3)-y_(2))<0