Home
Class 12
MATHS
If p and p1 be the lengths of the perpen...

If `p and p_1` be the lengths of the perpendiculars drawn from the origin upon the straight lines `x sin theta + y cos theta = 1/2 a sin 2 theta and x cos theta - y sin theta = a cos 2 theta`, prove that `4p^2 + p^2_1 = a^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If p and q are respectively the perpendiculars from the origin upon the straight lines, whose equations are x sec theta + y cosec theta =a and x cos theta -y sin theta = acos 2 theta , then 4p^(2) + q^(2) is equal to

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If p_(1) and p_(2) are the lengths of the perpendicular form the orgin to the line x sec theta+y cosec theta=a and xcostheta-y sin theta=a cos 2 theta respectively then prove that 4p_(1)^(2)+p_(2)^(2)=a^(2)

If p and q are the lengths of perpendiculars from the origin to the lines x cos theta-y sin theta=k cos2 theta and x sec theta+y csc theta=k respectively,prove that quad p^(2)+4q^(2)=k^(2)

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is

If x sin^(3)theta+y cos^(3)theta=sin theta cos theta andx sin theta=y cos theta prove that x^(2)+y^(2)=1