Home
Class 12
MATHS
Show that the point (x ,y) given by x=(2...

Show that the point `(x ,y)` given by `x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2))` lies on a circle for all real values of `t` such that `-1lt=tlt=1,` where a is any given real number.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the point (x,y) given by x=(2at)/(1+t^(2)) and y=((1-t^(2))/(1+t^(2))) lies on a circle for all real values of t such that -1<=t<=1 where a is any given real number.

Show that the point (x,y) given y x = ( 2at)/( 1+t^(2)) and y = (a( 1-t^(2)))/( 1+t^(2)) lies on a circle..

Find dy/dx: x=(2at)/(1+t^2), y=(a(1-t^2))/(1+t^2)

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

A function y=f(x) is given by x=(1)/(1+t^(2)) and y=(1)/(t(1+t^(2))) for all t>0 then f is

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=