Home
Class 12
MATHS
Prove that the radii of the circles x^2 ...

Prove that the radii of the circles `x^2 +y^2 = 4, 4x^2 + 4y^2 - 8x-24y+15=0 and x^2 + y^2 - 4y - 5 =0` are in arithmetic progression.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the radii of the circles x^(2)+y^(2)=1,x^(2)+y^(2)-2x-6y=6and x^(2)+y^(2)-4x-12y-9=0 are in arithmetic progression.

Prove that the radi of the circles x^(2)+y^(2)=1x^(2)+y^(2)-2x-6y=6 and x^(2)+y^(2)-4x-12y=9 are in arithmetic progression.

Prove that the centres of the circles x^(2)+y^(2)=1,x^(2)+y^(2)+6x-2y-1=0 and x^(2)+y^(2)-12x+4y=1 are collinear

Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y - 4 = 0

Two circles x^(2) + y^(2) - 4x + 10y + 20 = 0 and x^(2) + y^(2) + 8x - 6y - 24= 0

What is the radius of the circle 4x^(2) +4y^(2) -20x +12y -15=0 ?

Circles x^(2)+y^(2)=4 and x^(2)+y^(2)-2x-4y+3=0