Home
Class 12
MATHS
The circumcentre of a triangle having ve...

The circumcentre of a triangle having vertices `A(a,atan alpha),B(b,btan beta),C(c,ctan gamma)` is at origin, where`alpha+beta+gamma =pi`. Then the orthocentre lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

The circumcentre of a triangle having vertices A(a,a tan alpha),B(b,b tan beta),C(c,c tan gamma) is at origin,where alpha+beta+gamma=pi. Then the orthocentre lies on

If the centroid of a triangle with vertices (alpha, 1, 3), (-2, beta, -5) and (4, 7, gamma) is the origin then alpha beta gamma is equal to …..........

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

The origin is the centroid of /_\ABC with the vertices A(alpha, 1, 3),B(-2, beta, -5) and C(4,7,gamma) find the values of alpha, beta, gamma .

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)