Home
Class 12
MATHS
Let alpha = Lt(mrarroo) Lt(nrarroo) cos^...

Let `alpha = Lt_(mrarroo) Lt_(nrarroo) cos^(2m) |__n pix`, where `x` is rational, `beta= Lt_(mrarroo) Lt_(nrarroo) cos^(2m) |__n pix,` where \'x\' is irrational, then the area of the triangle having vertices `(alpha, beta), (-2, 1) and (2, 1)` is (A) 2 (B) 4 (C) 1 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0 , is equal to (A) k/e (B) e/k (C) 1/(ke) (D) none of these

If alpha, beta are the roots of x^(2) - 3x + a = 0 , a in R and lt 1 lt beta, then find the values of a

f(x)=lim_(nrarroo)cos^(2n)(pix^(2))+[x] (where, [.] denotes the greatest integer function and n in N ) is

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

Lt_(nrarroo)((n!)/n^n)^(1/n)= (A) e^(-2) (B) e^(-1) (C) e^3 (D) e

The function f(x)=lim_(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes the greatest integer function and n in N )

If (cos x)/(sin ax) is periodic function, then lim_(mrarroo)(1+cos^(2m)n!pia) is equal to

Lt_(nrarroo) sum_(r=1)^(6n) 1/(n+r)= (A) log6 (B) log7 (C) log5 (D) 0

If the median of the scores 1, 2, x, 4 and 5 (where 1 lt 2 lt x lt 4 lt 5 ) is 3, then the mean of the scores is ______.

If the median of the scores 1,2,x,4,5("where " 1 lt 2 lt x lt 4 lt 5) is 3, then the mean of the scores is