Home
Class 12
MATHS
Let O be the origin and P -= (a, a^2). (...

Let `O` be the origin and `P -= (a, a^2)`. (1) If `P(a, a^2)` lies in the first quadrant between the lines `y=x and y=2x`, then `1ltalt2`. (2) Slope of `OP` is `a`. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: y(x)=sin(x+pi/4) Statement-2: Integrating factor of the given differential equation is secx . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Assetion: a_1,a_2,a_3,…………. an are not in G.P. Reason: a_(n+1)=a_n (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: a^2,b^2,c^2 are in A.P., Reason: 1/(b+c), 1/(c+a), 1/(a+b) are in A.P. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Statement 1 : The curve y= - x^2/2 + x + 1 is symmetric with respect to the line x=1 . Statement 2: A parabola is symmetric about its axis (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: The area of the region R={(x,y) : |x| le |y| and x^2+y^2 le 1} is pi/4 sq. units.Statement-2: Curves |y|=|x| and x^2+y^2=1 symmetric about both x and y-axis. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: The area bounded by the curves y=ln|x| , y-axis and y=1-|x| is 2 sq. units.Statement-2: Both the curves y=log|x| and y=1-|x| are symmetric about y-axis. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

(1) The lines y=3x+1 and 2y=x+3 are equally inclined to the line y= (1-5sqrt(2)/7 x + 5 . (2) The line y= (1-5sqrt(2)/7 x + 5 is parallel to a bisector of the angle between lines y=3x+1 and 2y=x+3 . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Lines 15x-18y+1=0, 12x+10y-3=0 and 6x+66y-11=0 donot form a triangle. (2) |(15, -18, 1), (12, 10, -3), (6, 66, -11)|=0 (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement-1: int_0^([x]) 4^(x-[x])dx=(3[x])/(2log2) ,Statement-2: int_0^([x]) a^(x-[x])dx=[x]int_0^1 a^(x-[x])dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Statement 1 : The line (x-12) cos theta + (y-3) sin theta = 1 touches a fixed circle for all values of theta . Statement 2 : y-beta = m (x-alpha) +- asqrt(1+m^2) is tangent to the circle (x-alpha)^2 + (y-beta)^2 = a^2 for all values of m . (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true