Home
Class 12
MATHS
If from any point P on the circle x^2+y^...

If from any point `P` on the circle `x^2+y^2+2gx+2fy+c=0`, tangents are drawn to the circle `x^2+y^2+2gx+2fy+csin^2 alpha+(g^2+f^2)cos^2 alpha=0`, then the angle between the tangents is :
(A) `alpha`
(B) `2 alpha`
(C) `alpha/2`
(D) `alpha/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If from any point P on the circle x^(2)+y^(2)+2gx+2fy+c=0 tangents are drawn to the circle x^(2)+y^(2)+2gx+2fy+c sin^(2)alpha+(g^(2)+f^(2))cos^(2)alpha=0 then angle between the tangents is

If from any point P on the circle x^(2)+y^(2)+2gx+2fy+c=0, tangents are drawn to the circle x^(2)+y^(2)+2gx+2fy+c sin^(2)alpha+(g^(2)+f^(2))cos^(2)alpha=0, then find the angle between the tangents.

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

Two tangent are drawn from the point (-2,-1) to parabola y^(2)=4x. if alpha is the angle between these tangents,then find the value of tan alpha.

If the circle x^(2)+y^(2)+2gx+2fy+c=0 touches y -axis then the condition is

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2gx + 2fy + a =0 to the circle x^(2) + y^(2) + 2gx + 2fy + b = 0 is