Home
Class 12
MATHS
Show that the length of the tangent from...

Show that the length of the tangent from anypoint on the circle : `x^2 + y^2 + 2gx+2fy+c=0` to the circle `x^2+y^2+2gx+2fy+c_1 = 0` is `sqrt(c_1 -c)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2gx + 2fy + a =0 to the circle x^(2) + y^(2) + 2gx + 2fy + b = 0 is

The length of the tangent drawn from any point on the circle x^2 + y^2 + 2gx + 2fy + lambda = 0 to the circle x^2 + y^2 + 2gx + 2fy + mu=0 is : (A) sqrt(mu-lambda) (B) sqrt(lambda-mu) (C) sqrt(mu+lambda) (D) none of these

Find the length of the tangent drawn from any point on the circle x^(2)+y^(2)+2gx+2fy+c_(1)=0 to the circle x^(2)+y^(2)+2gx+2fy+c_(2)=0

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

What is the length of the intercept made on the x-axis by the circle x^(2) +y^(2) + 2gx + 2fy + c = 0 ?

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

Find the centre and radius of the circle ax^(2) + ay^(2) + 2gx + 2fy + c = 0 where a ne 0 .