Home
Class 12
MATHS
If the radical axis of the circles x^2 +...

If the radical axis of the circles `x^2 + y^2 + 2gx + 2fy + c = 0` and `2x^2 + 2y^2 + 3x + 8y+2c=0` touches the circle `x^2 + y^2 + 2x - 2y + 1 = 0`, show that either `g= 3/4` or `f = 2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If the radical axis of the circles x^(2)+y^(2)+2gx+2fy+c=0 and 2x^(2)+2y^(2)+3x+8y+2c=0 touches the circle x^(2)+y^(2)+2x+1=0, show that either g=(3)/(4) or f=2

The radical axis of the circles x^(2)+y^(2)+2gx+c=0 and 2x^(2)+2y^(2)+3x+2y+2c=0 touches the circle x^(2)+y^(2)+y^(2)+2x+2y+1=0 if

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

Equation of radical axis of the circles x^(2) + y^(2) - 3x - 4y + 5 = 0 and 2x^(2) + 2y^(2) - 10x - 12y + 12 = 0 is

Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y - 4 = 0

If line 3x - y + c = 0 touches circle x^(2) + y^(2) - 2x + 8y - 23 =0 , then c =

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

If circles x^(2) + y^(2) + 2gx + 2fy + e = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - e =