Home
Class 12
MATHS
If the tangents are drawn to the circle ...

If the tangents are drawn to the circle `x^2+y^2=12` at the point where it meets the circle `x^2+y^2-5x+3y-2=0,` then find the point of intersection of these tangents.

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn to the circle x^(2)+y^(2)=9 at the points where it is met by the circle x^(2)+y^(2)+3x+4y+2=0. Fin the point of intersection of these tangents.

Tangents are drawn to the circle x^(2)+y^(2)=16 at the points where it intersects the circle x^(2)+y^(2)-6x-8y-8=0 , then the point of intersection of these tangents is

Tangents are drawn to the circle x^(2) + y^(2) = 12 at the points where it is met by the circle x^(2) + y^(2) - 5x + 3y -2 = 0 , find the point of intersection of these tangents.

The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touches the circle x^(2)+y^(2)-8x+6y+20=0 at the point

If the tangent to the ellipse x^(2)+2y^(2)=1 at point P((1)/(sqrt(2)),(1)/(2)) meets the auxiliary circle at point R and Q, then find the points of intersection of tangents to the circle at Q and R.

Slope of tangent to the circle (x-r)^(2)+y^(2)=r^(2) at the point (x.y) lying on the circle is

Tangent are drawn to the circle x^(2)+y^(2)=1 at the points where it is met by the circles x^(2)+y^(2)-(lambda+6)x+(8-2 lambda)y-3=0,lambda being the variable.The locus of the point of intersection of these tangents is 2x-y+10=0 (b) 2x+y-10=0x-2y+10=0 (d) 2x+y-10=0