Home
Class 12
MATHS
Tangents are drawn to the circle x^2+y^2...

Tangents are drawn to the circle `x^2+y^2=9` at the points where it is met by the circle `x^2+y^2+3x+4y+2=0` . Fin the point of intersection of these tangents.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangents are drawn to the circle x^(2)+y^(2)=12 at the point where it meets the circle x^(2)+y^(2)-5x+3y-2=0, then find the point of intersection of these tangents.

Tangents are drawn to the circle x^(2) + y^(2) = 12 at the points where it is met by the circle x^(2) + y^(2) - 5x + 3y -2 = 0 , find the point of intersection of these tangents.

Tangents are drawn to the circle x^(2)+y^(2)=16 at the points where it intersects the circle x^(2)+y^(2)-6x-8y-8=0 , then the point of intersection of these tangents is

Tangent are drawn to the circle x^(2)+y^(2)=1 at the points where it is met by the circles x^(2)+y^(2)-(lambda+6)x+(8-2 lambda)y-3=0,lambda being the variable.The locus of the point of intersection of these tangents is 2x-y+10=0 (b) 2x+y-10=0x-2y+10=0 (d) 2x+y-10=0

Find the point of intersection of the circle x^(2)+y^(2)-3x-4y+2=0 with the x -axis.