Home
Class 12
MATHS
The radius of the circle passing through...

The radius of the circle passing through the points `(1, 2), (5, 2) and (5, -2)` is : (A) `5sqrt(2)` (B) `2sqrt(5)` (C) `3sqrt(2)` (D) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (5+sqrt(5))(5-sqrt(5)) (ii) (3+2sqrt(2))(3-2sqrt(2))

The length of the tangent of the curve y=x^(2)+2 at (1, 3) is (A) sqrt(5) (B) 3sqrt(5) (C) (3)/(2) (D) (3sqrt(5))/(2)

Simplify: (5+sqrt(5))(5-sqrt(5))( ii) (3+2sqrt(2))(3-2sqrt(2))

The length of the tangent of the curve y=x^(2)+2 at (1, 3) is (A) sqrt(5) (B) 3sqrt(5) (C) 3/2 (D) (3sqrt(5))/(2)

The length of the tangent of the curve y=x^(2)+2 at (1 3) is (A) sqrt(5) (B) 3sqrt(5) (C) 3/2 (D) (3sqrt(5))/(2)

Radius of the circle that passes through the origin and touches the parabola y^(2)=4ax at the point (a,2a) is (a) (5)/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt((5)/(2))a (d) (3)/(sqrt(2))a

If |z-4/2z|=2 then the least of |z| is (A) sqrt)5)=-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

An irrational number between 2 and 2.5 is sqrt(11) (b) sqrt(5) (c) sqrt(22.5) (d) sqrt(12.5)