Home
Class 12
MATHS
Locus of the middle points of the line s...

Locus of the middle points of the line segment joining `P(0, sqrt(1-t^2) + t) and Q(2t, sqrt(1-t^2) - t)` cuts an intercept of length `a` on the line `x+y=1`, then `a =` (A) `1/sqrt(2)` (B) `sqrt(2)` (C) `2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A,=(sqrt(1-t^(2))+t,0) and B,=(sqrt(1-t^(2))-t,2t) are two variable points then the locus of mid-point of AB is

Find (dx)/(dt) when x = sin^-1(t.sqrt(1-t) +sqrt(t) sqrt(1-t^2)) .

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

x=sqrt(sin 2t),y=sqrt(cos 2 t)

int_(0)^(1)t^(2)sqrt(1-t)*dt

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these