Home
Class 12
MATHS
If a+b+3c=0, c != 0 and p and q be the n...

If `a+b+3c=0, c != 0 and p and q` be the number of real roots of the equation `ax^2 + bx + c = 0` belonging to the set `(0, 1)` and not belonging to set `(0, 1)` respectively, then locus of the point of intersection of lines `x cos theta + y sin theta = p` and `x sin theta - y cos theta = q`, where `theta` is a parameter is : (A) a circle of radius `sqrt(2)` (B) a straight line (C) a parabola (D) a circle of radius 2

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the points of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b , ( theta= variable) is :

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

Prove that for all values of theta ,the locus of the point of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b is a circle.

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

If x cos theta + y sin theta =2 and x cos theta - y sin theta =0 , then which one of the following is true ?

For different values of theta, the locus of the point of intersection of the straight lines x sin theta-y(cos theta-1)=a sin theta and x sin theta-y(cos theta+1)+a sin theta=0 represents