Home
Class 12
MATHS
An equilateral triangle whose two vertic...

An equilateral triangle whose two vertices are `(-2, 0) and (2, 0)` and which lies in the first and second quadrants only is circumscribed by a circle whose equation is : (B) `sqrt(3)x^2 + sqrt(3)y^2 - 4x - 4 sqrt(3)y = 0` (C) `sqrt(3)x^2 + sqrt(3)y^2 - 4y + 4 sqrt(3)y = 0` (D) `sqrt(3)x^2 + sqrt(3)y^2 - 4y - 4 sqrt(3) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

sqrt(2)x+sqrt(3)y=0 sqrt(3)x+sqrt(8)y=0

sqrt(2)x+sqrt(3)y=0sqrt(3)x-sqrt(8)y=0

The lines represented by the equation x^2 + 2sqrt(3)xy + 3y^(2) -3x -3sqrt(3)y -4=0 , are

The equationre x^(2)-2sqrt(3)xy+3y^(2)-3x+3sqrt(3)y-4=0 presents.

The equation of a circle of radius 1 touching the circles x^2 + y^2 - 2 |x| = 0 is: (A) x^2 + y^2 + 2sqrt(3x) - 2 = 0 (B) x^2 + y^2 - 2sqrt(3)y+2=0 (C) x^2 + y^2 + 2sqrt(3) y + 2 = 0 (D) x^2 + y^2 + 2 sqrt(3) x + 2 = 0