Home
Class 12
MATHS
Two circles, each having radius 4, have ...

Two circles, each having radius 4, have a common tangent given by `3x+2y-6=0` at `(2, 0)`. Then their centres are : (A) `(2+ 5/sqrt(13), 8/sqrt(13)), (2- 5/sqrt(13)``, (-8)/sqrt(13))` (B) `(2+ 12/sqrt(13), 8/sqrt(13))`, `(2- 12/sqrt(13), (-8)/sqrt(13))` (C) `(2, 3), (4, 5)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sin[(1)/(2)cot^(-1)((2)/(3))]= sqrt((sqrt(13)-2)/(2sqrt(13))) (2+sqrt(13))/(2sqrt(13)) sqrt((2-sqrt(13))/(2sqrt(13))) (2-sqrt(13))/(2sqrt(13))

sqrt(13^(2))-sqrt(36) times sqrt(4)=

Simplify (sqrt(13)-sqrt(11))/(sqrt(13)+sqrt(11)) + (sqrt(13)+sqrt(11))/(sqrt(13)-sqrt(11))

Comparison of ratios (sqrt(13))/(sqrt(8)),(sqrt(17))/(sqrt(15))

(13+2sqrt(5))^(2)=?sqrt(5)+189

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

sqrt((13)^(4))=?

the value of |((3-i sqrt(2))^(2))/(1+i2)| is equal to (i) (11)/(sqrt(5)) (ii) (18)/(sqrt(7)) (iii) (5)/(sqrt(11)) (iv) (13)/(sqrt(3))

(3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))-(6)/(sqrt(8)-sqrt(12))=? a.sqrt(3)-sqrt(2)b*sqrt(3)+sqrt(2)c.5sqrt(3)d.1