Home
Class 12
MATHS
The equation of the line(s) parallel to ...

The equation of the line(s) parallel to `x-2y=1` which touch(es) the circle `x^2+y^2-4x-2y-15=0` is (are) `x-2y+2=0` (b) `x-2y-10=0` `x-2y-5=0` (d) 3`x-y-10=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the line(s) parallel to x-2y=1 which touch(es) the circle x^(2)+y^(2)-4x-2y-15=0 is (are) (a)x-2y+2=0 (b) x-2y-10=0 (c) x-2y-5=0 (d) 3x-y-10=0

A line parallel to the line x-3y=2 touches the circle x^(2)+y^(2)-4x+2y-5=0 at the point

Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=

The pole of the line x-2y+5=0 with respect to the circle x^(2)+y^(2)-4x+2y-4=0 lies on

Suppose a x+b y+c=0 , where a ,ba n dc are in A P be normal to a family of circles. The equation of the circle of the family intersecting the circle x^2+y^2-4x-4y-1=0 orthogonally is (a)x^2+y^2-2x+4y-3=0 (b)x^2+y^2-2x+4y+3=0 (c)x^2+y^2+2x+4y+3=0 (d) x^2+y^2+2x-4y+3=0

The points of intersection of the line 4x-3y-10=0 and the circle x^(2)+y^(2)-2x+4y-20=0 are

The line x+3y=0 is a diameter of the circle x^(2)+y^(2)-6x+2y=0

For the circle x^(2)+y^(2)-2x-4y-4=0 ,the lines 2x+3y-1=0,2x+y-1=0 are