Home
Class 12
MATHS
If x/alpha+y/beta=1 touches the circle x...

If `x/alpha+y/beta=1` touches the circle `x^2+y^2=a^2` then point `(1/alpha , 1/beta)` lies on (a) straight line (b) circle (c) parabola (d) ellipse

Promotional Banner

Similar Questions

Explore conceptually related problems

I If a point (alpha,beta) lies on the circle x^(2)+y^(2)=1 then the locus of the point (3 alpha.+2,beta), is

The points (2 ,1)(3 ,-2) and (alpha ,beta) form a triangle of area 4 square units.If the point (alpha, beta) lies on the line y=x+3 then the value of alpha+beta is (are)

The points (2, 1), (3, -2) and (alpha, beta) form a triangle of area 4 square units. If the point (alpha, beta) lies on the line y=x+3 then the value of alpha+beta is (are)

The points (2, 1), (3, -2) and (alpha, beta) form a triangle of area 4 square units. If the point (alpha, beta) lies on the line y=x+3, then the value of alpha+beta is (are)

The points (2, 1), (3, -2) and ( alpha, beta ) form a triangle of area 4 square units.If the point ( alpha,beta ) lies on the line y=x+3 then the value of alpha +beta is (are)

If alpha,beta are the roots of x^(2)+x+1=0 then det[[beta,y+alpha,1alpha,1,y+beta]]

The sides AC and AB of a o+ABC touch the conjugate hyperbola of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1. If the vertex A lies on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then the side BC must touch parabola (b) circle hyperbola (d) ellipse