Home
Class 12
MATHS
A(1/sqrt(2), 1/sqrt(2)) is a point on th...

`A(1/sqrt(2), 1/sqrt(2))` is a point on the circle `x^2 + y^2 = 1 and B` is another point on the circle such that `AB = pi/2` units. Then coordinates of `B` can be : (A) `(1/sqrt(2), - 1/sqrt(2))` (B) `(-1/sqrt(2), 1/sqrt(2))` (C) `(-1/sqrt(2), - 1/sqrt(2))` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A((1)/(sqrt(2)),(1)/(sqrt(2))) is a point on the circle x^(2)+y^(2)=1 and B is another point on the circle such that are length AB=(pi)/(2) units. Then,the coordinates of B can be ((1)/(sqrt(2)),1sqrt(2))( b) (-(1)/(sqrt(2)),1sqrt(2))(-(1)/(sqrt(2)),-(1)/(sqrt(2)))( d) none of these

The image of the centre of the circle x^2 + y^2 = 2a^2 with respect to the line x + y = 1 is : (A) (sqrt(2), sqrt(2) (B) (1/sqrt(2) , sqrt(2) ) (C) (sqrt(2), 1/sqrt(2)) (D) none of these

The line y=x is tangent at (0, 0) to a circle of radius 1. The centre of circle may be: (a) (1/(sqrt(2)),-1/(sqrt(2))) (b) (-1/2,1/2) (c) (1/2,-1/2) (d) (-1/(sqrt(2)),1/(sqrt(2)))

Solution set of inequation ( cos^-1x)^2-(sin^-1x)^2gt0 is (A) [0, 1/sqrt(2)) (B) [-1, 1/sqrt(2)) (C) (-1,sqrt2) (D) none of these

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

The area of the figure bounded by the curves y=cosx and y=sinx and the ordinates x=0 and x=pi/4 is (A) sqrt(2)-1 (B) sqrt(2)+1 (C) 1/sqrt(2)(sqrt(2)-1) (D) 1/sqrt(2)

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

The value of (lim)_(x->0)(sqrt(2)-sqrt(1+cos x))/(sin^2x) is 1/(2sqrt(2)) b. 1/(8sqrt(2)) c. 1/(4sqrt(2))\ d. -1/(4sqrt(2))