Home
Class 12
MATHS
If the tangents at the points P and Q on...

If the tangents at the points `P and Q` on the parabola `y^2 = 4ax` meet at `R and S` is its focus, prove that `SR^2 = SP.SQ`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangents at the points P and Q on the parabola y^(2)=4ax meet at T, and S is its focus,the prove that ST,ST, and SQ are in GP.

If the normals at P,Q,R of the parabola y^(2)=4ax meet in O and S be its focus,then prove that.SP.SQ.SR=a.(SO)^(2)

Let Q be the foot of the perpendicular from the origin O to the tangent at a point P(alpha, beta) on the parabola y^(2)=4ax and S be the focus of the parabola , then (OQ)^(2) (SP) is equal to

P & Q are the points of contact of the tangents drawn from the point T to the parabola y^(2) = 4ax . If PQ be the normal to the parabola at P, prove that TP is bisected by the directrix.

IF the normals to the parabola y^2=4ax at three points P,Q and R meets at A and S be the focus , prove that SP.SQ.SR= a(SA)^2 .

The tangents to the parabola y^(2)=4ax at the vertex V and any point P meet at Q. If S is the focus,then prove that SP.SQ, and SV are in G.