Home
Class 12
MATHS
Statement :1 If a parabola y ^(2) = 4ax ...

Statement :1 If a parabola `y ^(2) = 4ax` intersects a circle in three co-normal points then the circle also passes through the vertr of the parabola. Because
Statement : 2 If the parabola intersects circle in four points `t _(1), t_(2), t_(3) and t_(4)` then `t _(1) + t_(2) + t_(3) +t_(4) =0` and for co-normal points `t _(1), t_(2) , t_(3)` we have `t_(1)+t_(2) +t_(3)=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a circle and the rectangular hyperbola xy = c^(2) meet in four points 't'_(1) , 't'_(2) , 't'_(3) " and " 't'_(4) then prove that t_(1) t_(2) t_(3) t_(4) = 1 .

A circle drawn on any focal AB of the parabola y^(2)=4ax as diameter cute the parabola again at C and D. If the parameters of the points A, B, C, D be t_(1), t_(2), t_(3)" and "t_(4) respectively, then the value of t_(3),t_(4) , is

Points A,B,C,D, on y^(2) = 4ax have parameters t_(1) , t_(2), t_(3) , t_(4) respectively . If AB bot CD then (t_(1) + t_(2)) (t_(3) + t_(4)) =

The normal at t_(1) and t_(2) on the parabola y^(2)=4ax intersect on the curve then t_(1)t_(2)

The point of intersection of the tangents to the parabola at the points t_(1), and t_(2) is

If a circle cuts a rectangular hyperbola xy=1 in four points P,Q,R,S and the parameters of these four points be t_(1),t_(2),t_(3) and t_(4) respectively and -20t_(1)t_(2)t_(3)t_(4)=k , then value of k equals

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

Statement-I If a circle S=0 intersect hyperbola xy=4 at four points, three of them being (2, 2), (4, 1) and (6, (2)/(3) , then the coordinate of the fourth point are ((1)(4), 16) . Statement-II If a circle S=0 intersects a hyperbola xy=c^(2) at t_1, t_2, t_3 and t_4 , then t_1t_2t_3t_4=1