Home
Class 12
MATHS
The line x-y+2=0 touches the parabola y^...

The line `x-y+2=0` touches the parabola `y^2 = 8x` at the point (A) `(2, -4)` (B) `(1, 2sqrt(2))` (C) `(4, -4 sqrt(2)` (D) `(2, 4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

Radius of the circle that passes through the origin and touches the parabola y^(2)=4ax at the point (a,2a) is (a) (5)/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt((5)/(2))a (d) (3)/(sqrt(2))a

The line 2x-y+4=0 cuts the parabola y^(2)=8x in P and Q. The mid-point of PQ is (a) (1,2)(b)(1,-2)(c)(-1,2)(d)(-1,-2)

if the line 4x+3y+1=0 meets the parabola y^(2)=8x then the mid point of the chord is

The line sqrt(2)y-2x+8a=0 is a normal to the parabola y^(2)=4ax at P .then P =

The length of the chord of the parabola y^(2)=x which is bisected at the point (2,1) is (a) 2sqrt(3)( b) 4sqrt(3)(c)3sqrt(2) (d) 2sqrt(5)

The line 4sqrt(2x)-5y=40 touches the hyperbola (x^(2))/(100)-(y^(2)_)/(64) =1 at the point

The line sqrt(2y)-2x+8a=0 is a normal to the parabola y^(2)=4ax at P ,then P=

If the line k^(2)(x-1)+k(y-2)+1=0 touches the parabola y^(2)-4x-4y+8=0 , then k can be