Home
Class 12
MATHS
The equaiton x^2/(10-a) + y^2/(4-a) = 1 ...

The equaiton `x^2/(10-a) + y^2/(4-a) = 1` represent an ellipse, if (A) `agt10` (B) `agt4` (C) `4ltalt10` (D) `alt4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (x^(2))/(10-a)+(y^(2))/(4-a)=1 represents an ellipse , if

If the equation x^2/(10-2a)+y^2/(4-2a)=1 represents an ellipse , then a lies in the interval

Show that the equation (10x-5)^(2)+(10y-5)^(2)=(3x+4y-1)^(2) represents an ellipse, find the eccentricity of the ellipse.

Let a=int_0^(pi/2) sinx/xdx , then (A) 0ltalt1 (B) agt2 (C) 1ltaltpi/2 (D) none of these

If sin^(4)x + cos^(4)x=k then possible value of k is/are : (A) 1/2 (B) 1/4 (C) 1 (D) 7/10

if the equation (10x-5)^(2)+(10y-4)^(2)=lambda^(2)(3x+4y-1)^(2) represents a hyperbola then

The angle between the normals of ellipse 4x^2 + y^2 = 5 , at the intersection of 2x+y=3 and the ellipse is (A) tan^(-1) (3/5) (B) tan^(-1) (3/4) (C) tan^(-1) (4/3) (D) tan^(-1) (4/5)

The equation sqrt((x-5)^(2)+y^(2))+sqrt((x+5)^(2)+y^(2))=k represents (A) Line segment if k=10 (B) Ellipse if k>10 (C) Line segment if k=5 (D) Ellipse if 0< k <10