Home
Class 12
MATHS
The equation of the tangents to the elli...

The equation of the tangents to the ellipse `4x^2 + 3y^2 = 5`, which are inclined at `60^0` to the X-axis are : (A) `y = x/sqrt(3) +- sqrt(65/12)` (B) `y = sqrt(3) +- sqrt(65/12)` (C) `y = sqrt(3)x +- sqrt(12/65)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

sqrt(2)x+sqrt(3)y=0sqrt(3)x-sqrt(8)y=0

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

sqrt(2)x+sqrt(3)y=0 sqrt(3)x+sqrt(8)y=0

Evaluate : ( sqrt(2)x + sqrt(3)y ) ( sqrt(2)x + sqrt(3)y )

A vertex of an equilateral triangle is at (2, 3), and th equation of the opposite side is x+y=2 , then the equaiton of the other two sides are (A) y=(2+sqrt(3)) (x-2), y-3=2sqrt(3)(x-2) (B) y-3=(2+sqrt(3) (x-2), y-3= (2-sqrt(3) (x-2) (C) y+3=(2-sqrt(3)(x-2), y-3=(2-sqrt(3) (x+2) (D) none of these

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

Direct tangents are : (A) y=sqrt(3)x+sqrt(3),y=-sqrt(3)x+sqrt(3)