Home
Class 12
MATHS
An ellipse is described by using an endl...

An ellipse is described by using an endless string which is passed over two pins. If the axes are `6 cm` and `4 cm`, the length of the string and distance between the pins are .........

Promotional Banner

Similar Questions

Explore conceptually related problems

An ellipse is described by using an endless string which is passed over two pins.If the axes are 6cm and 4cm ,the length of the string and distance between the pins are ......

If the radii of two circles be 8 cm and 4 cm and the length of the transverse common tangent be 13 cm, then find the distance between the two centers is

A string fixed at both ends has consecutive standing wave modes for which the distance between adjacent nodes are 18 cm and 16 cm respectively. The length of the string is -

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. If one end of the string is at x = 0 , positions of the nodes can be described as

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. Amplitude of simple harmonic motion of a point on the string that is located at x = 1.8 cm will be

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. Maximum value of the y - positions coordinate in the simple harmonic motion of an element of the string that is located at an antinode will be

Two masses 2 kg and 4 kg are connected at two ends of light inextensible string passing over a frictionless pulley . If the masses are released , then find the accelaration of the masses and the tension in the string .

If the lengths of the two parallel sides of a trapezium are 5 cm and 7 cm and the distance between these parallel sides is 4cm. Find its area (in cm^(2) ).

Two masses 2 kg and 4 kg are connected at the two ends of light inextensible string passing over a frictionless pulley. If the masses are released, then find the acceleration of the masses and the tension in the string.