Home
Class 12
MATHS
If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))...

If `x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation x = (e ^(t) + e ^(-t))/(2), y = (e ^(t) -e^(-t))/(2), t in R, represents

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

The locus of point ((e^(t)+e^(-t))/(2),(e^(t)-e^(-t))/(2)) is a hyperbola with eccentricity

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find (dy)/(dx),quad when x=(e^(t)+e^(-t))/(2) and y(e^(t)-e^(-t))/(2)

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

If x=e^(sin^(-1)t^(t)),y=tan^(-1)t, then (dy)/(dx)

if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to