Home
Class 12
MATHS
If latus rectum of ellipse x^2 tan^2 phi...

If latus rectum of ellipse `x^2 tan^2 phi + y^2 sec^2 phi = 1` is `1/2`, then `(0ltphi ltpi)` is equal to (A) `pi/2` (B) `pi/6` (C) `pi/3` (D) `pi/12`

Promotional Banner

Similar Questions

Explore conceptually related problems

If latus rectum of ellipse x^(2)tan^(2)phi+y^(2)sec^(2)phi=1 is 1/2, then the value of phi where phi in(0,pi) is

If latus recturn of the ellipse x^(2)tan^(2)alpha+y^(2)sec^(2)alpha=1 is (1)/(2) then alpha(0

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

The eccentric angle of a point on the ellipse x^2/6 + y^2/2 = 1 whose distance from the centre of the ellipse is 2, is (A) pi/4 (B) 7pi/6 (C) 3pi/2 (D) 5pi/3

If pi<=x<=2 pi, then cos^(-1)(cos x) is equal to (A) x(B)-x(C)2 pi+x(D)2 pi-x

int_0^(pi//2)xsinx\ dx is equal to pi//2 b. pi//4 c. pi d. 1

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6