Home
Class 12
MATHS
x^2/(p^2 - P-6) + y^2/(P^2 - 6P + 5) = 1...

`x^2/(p^2 - P-6) + y^2/(P^2 - 6P + 5) = 1` will represent the ellipse if `P` lies in the interval (A) `(-oo, -2)` (B) `(1, oo)` (C) `(3, oo)` (D) `(5, oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (a)(-oo,-2) (b) -2,-1) (c)(1,2) (d) (2,+oo)

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

The values of x for which 1/(1+sqrt(x)), 1/(1-x), 1/(1-sqrt(x) are in A.P. lie in the interval (A) (0,oo) (B) (1,oo) (C) (0,1) (D) none of these

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

The domain of cosh^(-1)5x is (1)R(2)[0,oo) (3) ((1)/(5),oo) (4) [(1)/(5),oo)

If both the roots of the quadratic equa,tion x^2-2kx+k^2+k-5=0 are less than 5 then k lies i the interval (A) [4,5] (B) 9-oo,4) (C) 6,oo) (D) 95,6]

The interval in which y=x^(2)backslash e^(-x) is increasing is (A)(-oo,oo)(B)(2,0)(C)(2,oo)(D)(0,2)

The interval in which the function y=x^(3) increases more rapid ,than the function y=6x^(2)+15x+5 (A) (-oo,-1) (B) (5,oo) (C) (-1,5) (D) (0,oo)